

LVT3V3 SMLVT3V3

TRANSIL

FEATURES

- UNDIRECTIONAL TRANSIL DIODE.
- PEAK PULSE POWER= 600 W @ 1ms.
- REVERSE STAND OFF VOLTAGE = 3.3 V.
- LOW CLAMPING FACTOR.
- FAST RESPONSE TIME: Tclamping : 1ps (0 V to VBR).

DESCRIPTION

The LVT3V3 and SMLVT3V3 are dedicated to the protection of the new 3V3 - supplied CMOS and BICMOS technologies.

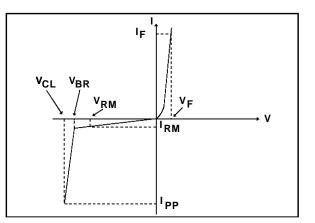
Their low clamping voltage at high current level guarantee an excellent protection for sensitive components.

MECHANICAL CHARACTERISTICS

- Body Marked With Logo, Type Code And Cathode Band.
- Tinned Copper Leads.
- High Temperature Soldering.

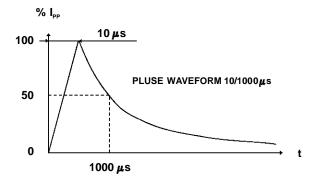
Symbol	Parameter	Value	Unit	
Рp	Peak pulse power dissipation See note 1 and derating curve Fig 1.	Tamb = 25°C	600	W
Р	Power dissipation on infinite heatsink See note 1 and derating curve Fig 1.	Tlead = 75°C	1.7	W
IFSM	Non repetitive surge peak forward current	Tamb = 25°C t =10 ms	50	А
T _{stg} Tj	Storage and junction temperature range	- 65 to + 175 175	°C °C	
Т	Maximum lead temperature for soldering during 10 s.	CB417 SOD 6	230 260	°C ℃

ABSOLUTE RATINGS (limiting values)


LVT3V3/SMLVT3V3

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
R _{th} (j-l)	Junction-leads on infinite heatsink	CB417 SOD 6	20 20	°C/W °C/W


ELECTRICAL CHARACTERISTICS

Symbol	Parameter				
VRM	Stand-off voltage.				
VBR	Breakdown voltage.				
VCL	Clamping voltage.				
IRM	Leakage current @ VRM.				
IPP	Surge current.				
ατ	Voltage temperature coefficient.				

TYPES	I _{RM} @ V _{RM}		V _{BR} @ I _R		V _{CL} @ IPP		VCL @ PP		С	С
	max		min		max		max		max	max
					10/1000µs		8/20µs		note2	note3
	μΑ	V	V	mA	v	A	v	Α	pF	pF
LVT3V3 SMLVT3V3	200	3.3	4.1	1	7.3	50	10	200	5200	3300

All parameters tested at 25 $^\circ\text{C},$ except where indicated.

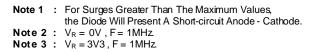
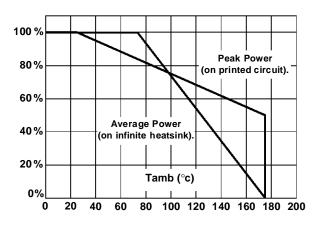



Figure 1 : Power dissipation derating versus ambient temperature

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

